

Level of measurements

Node level

Dyadic level (all pairs)

Clique/subgroup

Entire network level

Network visualization: MDS and agglomerate clustering

One-mode/bipartite networks

Four different types of graphs/networks

Binary or values of	Direction of social network				
social networks	Undirected	Directed			
Binary	Type I	Type II			
	Binary undirected social networks	Binary directed social networks			
Valued	Type III	Type IV			
	Valued undirected social networks	Valued directed social networks			

Node level measurements


- Centrality:
 - Degree centrality
 - Betweeness centrality
 - Closeness centrality

Degree centrality

 Degree centrality measures to what extent a given node is connected with all other nodes in a network (it only accounts for direct connection)

$$C_D(N_i) = \sum_{j=1}^g x_{i,j} (i \neq j)$$

 It basically is the row margin or column margin of the network matrix

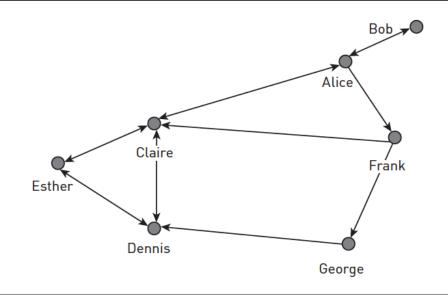


TABLE 3.1 ● Adjacency Matrix of Friendship Network Among the Seven Individuals

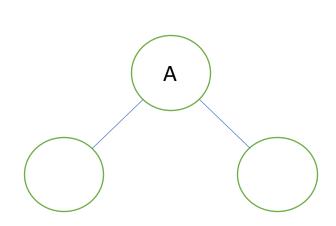
	Bob	Alice	Frank	George	Dennis	Claire	Esther	RM
Bob	0	1	0	0	0	0	0	1
Alice	1	0	1	0	0	1	0	3
Frank	0	1	0	1	0	1	0	3
George	0	0	1	0	1	0	0	2
Dennis	0	0	0	1	0	1	1	3
Claire	0	1	1	0	1	0	1	4
Esther	0	0	0	0	1	1	0	2
СМ	1	3	3	2	3	4	2	_

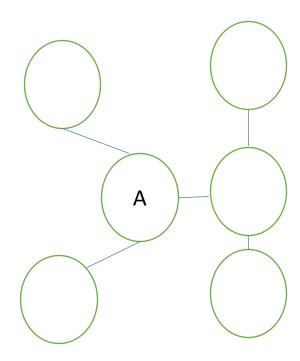
Notes: RM: row margin—aggregating cell values within a given row across columns. CM: column margin—aggregating cell values within a given column across rows.

For directed binary graphs, one needs to distinguish between indegree (CM) and outdegree centrality (RM)

TABLE 3.2	•	Binary-Directed Matrix of Friendship Among Seven Individuals
-----------	---	--

	Bob	Alice	Frank	George	Dennis	Claire	Esther	RM
Bob	0	0	0	0	0	0	0	0
Alice	1	0	1	0	0	1	0	3
Frank	0	0	0	1	0	1	0	2
George	0	0	0	0	1	0	0	1
Dennis	0	0	0	0	0	1	0	1
Claire	0	1	0	0	1	0	1	3
Esther	0	0	0	0	1	1	0	2
СМ	1	1	1	1	3	/.	1	_


Standard degree centrality


 Degree centrality is very sensitive to the size of network, to compare node's degree centrality across different network, one needs to use standard degree centrality

$$C_D'(N_i) = \frac{C_D(N_i)}{g-1}$$

Comparing node A in the following graphs

Two nodes centrality



Betweenness centrality

Betweenness centrality
measures to what extent a
given node sits on the geodesic
path of all other pairs of nodes
in a given network

It draws on Burt's famous "structural hole" theory, which states that a node occupy structural hole by connecting with two or more unconnected nodes or clusters of nodes.

*Thick lines represent a manager's direct contacts.

Computing betweenness centrality

For a given node i,

$$C_B(N_i) = \sum_{j < k} \frac{g_{j,k}(N_i)}{g_{j,k}}$$

Standardized betweenness centrality

$$C'_{B}(N_{i}) = \frac{C_{B}N_{i} \times 2}{(g-1)(g-2)}$$

$$C'_{B}(N_{i}) = \frac{C_{B}N_{i}}{(g-1)(g-2)}$$

Closeness centrality

$$C_{C}(N_{i}) = \frac{1}{\left[\sum_{j=1}^{g} d(N_{i}, N_{j})\right]} (i \neq j)$$

Standard closeness centrality

 Much like degree centrality and betweenness centrality, closeness centrality is very sensitive to the size of network

$$C'_{C}(N_{i}) = (g-1)(C_{C}(N_{i})) = \frac{g-1}{\left[\sum_{j=1}^{g} d(N_{i}, N_{j})\right]}$$

The three centrality measures

Comparing nodes within the same graph/network, all centrality measures apply, each of which measures different aspects of the nodes (degree – direct connection, betweenness – structural hole, and closeness – geodesic distance or speed)

Comparing nodes across different graph/network, apply the standard version of the three centrality measures