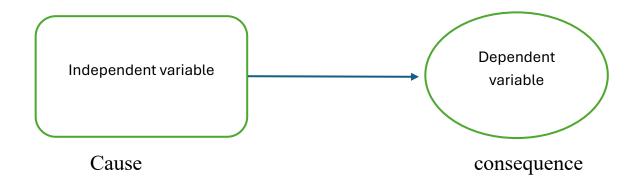
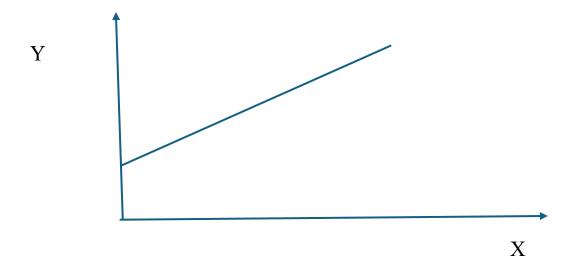
Chapter 9: bivariate statistics

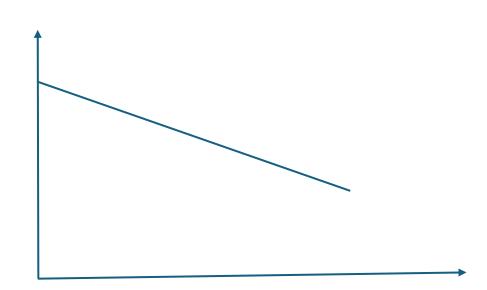
1) What is bivariate statistics?

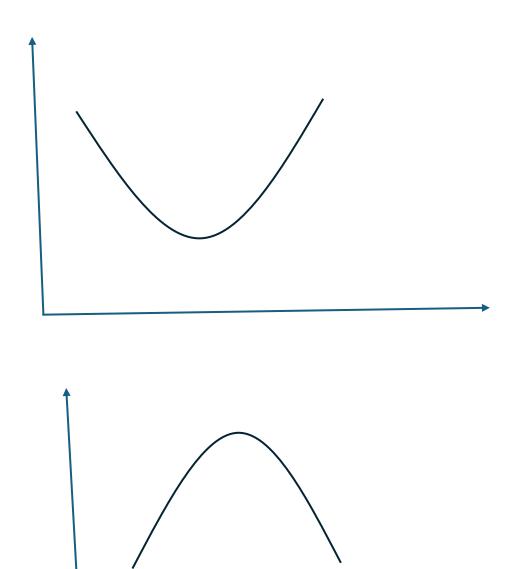

bivariate statistics refers to relationships between two variables, it handles two aspects of statistical analysis: the strength of the bivariate association, and the significance of the bivariate relationship (p value).

When two variables are both discrete variables, bivariate statistics use cross tab and chi-square (p value)

When independent variable is the dummy, while dependent variable is interval/ratio, bivariate statistics uses two-sample t test.


When the independent variable is discrete (groups> 2), and the dependent variable is interval/ratio, we use ANOVA (Analysis of Variance).


2) Conceptualizing relationship between two variables



- A)LSAT -> Law school admission
- B) Race -> income
- C) Gender-> income
- D)Attendance -> grade

3) Direction of bivariate statistics

4) Converting from raw data to crosstab

Case #	Gender (m/w)	Type of cars (pickup	
		truck/other types)	
1	M	Pickup	
2	W	Other	
3	W	Other	
4	M	Pickup	
5	W	Other	
6	W	Other	
7	W	Pickup	
8	M	Other	
9	W	Pickup	
10	W	Other	
11	M	Other	

Crosstab between gender and type of cars

	Men	Women	RM
Pickup	2	2	4
_	(50%)	(28.6%)	
Other vehicles	2	5	7
	(50%)	(71.4%)	
CM	4	7	N = 11

- 1) Always arrange independent variable groups across different columns
- 2) Always arrange dependent variable groups across different row

- 3) RM (Row Margins) are the summation of the cell frequencies across different columns within a given row
- 4) CM (Column Margins) are the summation of the cell frequencies across different rows within a given column
- 5) Cell percentage is calculated with cell frequencies divided by its CM