ANOVA table and solutions

	Sum of square	df	MSS	F	Р	Eta-square
Between	$\sum_{r} (\overline{X_G} - \overline{X_T})^2 \times N_G$	K – 1	SS _{between}	MSS _{between}		SS _{between}
			k-1	MSS _{within}		SS _{total}
Within	$SS_{Total} - SS_{Between}$	N – K	SS _{within}			
			N-K			
Total	$\sum (X_i - \overline{X_T})^2$	N – 1				

Question 4 in the exercise

	Sum of square	df	MSS	F	Р	Eta-square
Between	36	2	18	20.22	P < .01	82%
Within	8	9	.89			
Total	44			-		

Knowing the school district reduces errors in estimating days of school missing by 82%.

You can have high significant ANOVA but very weak associations, or you can have insignificant ANOVA but very strong associations.